
Integer partitions and exclusion statistics

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 11255

(http://iopscience.iop.org/1751-8121/40/37/004)

Download details:

IP Address: 171.66.16.144

The article was downloaded on 03/06/2010 at 06:13

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/37
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 11255–11269 doi:10.1088/1751-8113/40/37/004

Integer partitions and exclusion statistics

Alain Comtet1,2, Satya N Majumdar1 and Stéphane Ouvry1
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Abstract
We provide a combinatorial description of exclusion statistics in terms
of minimal difference p partitions. We compute the probability distribution
of the number of parts in a random minimal p partition. It is shown that
the bosonic point p = 0 is a repulsive fixed point for which the limiting
distribution has a Gumbel form. For all positive p, the distribution is shown to
be Gaussian.

PACS numbers: 05.30.Jp, 05.30.Pr, 02.10.Ox

1. Introduction

The integer partition problem has a long history going back to Euler. The classical
question asks: In how many ways ρ(E) can one partition an integer E into nonzero integer
parts E = ∑

j hj such that hj � hj+1 for all j = 1, 2, . . .? For example, ρ(4) = 5:
4 = 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1. Pictorially, one can represent the part
hj as the height of the j th column with nonincreasing heights such that the total height under

the columns is E. Hardy and Ramanujan proved [1] that for large E, ρ(E) � 1
4

1
31/2E

ea
√

E ,
with a = π

√
2/3. Similarly, one can ask the number of ways of partitioning the integer E

into distinct integer summands, i.e., E = ∑
j hj such that hj > hj+1 with strictly decreasing

height. For example, the integer 4 can be partitioned into distinct summands in only two
ways, 4 = 4 = 3 + 1. In this restricted case, it is known that asymptotically for large E [2],
ρ(E) � 1

4
1

31/4E3/4 eb
√

E , where b = a/
√

2 = π/
√

3.
Another way of representing integer partitions makes clear the connection with a gas of

noninteracting quantum particles. Let ni be the number of columns of height h = i in a given
partition, i.e., the number of times the summand i appears in a given partition. For example,
in the partition 4 = 2 + 1 + 1, one has n1 = 2, n2 = 1 and nj = 0 for all j > 2. Then,
E = ∑

i niεi , where εi = i for i = 1, 2, . . . represents equidistant single particle energy levels
and ni = 0, 1, 2, . . . represents the occupation number of the ith level. In the unrestricted
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problem, the occupation number ni = 0, 1, 2 . . . (bosons) whereas in the restricted problem
ni = 0, 1 (fermions). Therefore, E = ∑

i niεi is the total energy of the system and

ρ(E) =
∑
ni

δ

(
E −

∞∑
i=1

niεi

)
. (1)

If, in addition, one restricts the number of summands to be N, then the number ρ(E,N)

of ways of partitioning E into N parts is simply the micro-canonical partition function of a gas
of quantum particles with total energy E and total number of particles N:

ρ(E,N) =
∑
ni

δ

(
E −

∞∑
i=1

niεi

)
δ

(
N −

∞∑
i=1

ni

)
. (2)

Evidently, ρ(E) = ∑∞
N=0 ρ(E,N). Even though the sum ρ(E) has similar asymptotic

behavior for large E for bosons and fermions, i.e., ln(ρ(E)) ∼ √
E (up to a constant prefactor),

we will show in this paper that ρ(E,N), as a function of N for a fixed E, has rather different
behavior for bosons and fermions.

Thus, a gas of noninteracting bosons or fermions occupying a single particle equidistant
spectrum (εi = i) both have a combinatorial interpretation in terms of partitions of an integer
E into N parts.

• Bose statistics corresponds to the case of unrestricted partitions ni = 0, 1, 2 . . . .

• Fermi statistics corresponds to the case of restricted partitions with distinct summands
ni = 0, 1.

A natural question, that we address in this paper, is how to provide a combinatorial description
of a quantum gas obeying exclusion statistics. Exclusion statistics is a generalization of Bose
and Fermi statistics [4–8]. It has been found explicitly in quantum models of interacting
particle systems, notably in the two-dimensional lowest-Landau-level (LLL) anyon model
[5] (i.e., the anyon model projected into the LLL of a strong magnetic field) and the one-
dimensional Calogero model [7, 9–13]. Note that the Calogero model can be obtained as a
particular limit of the LLL anyon model [14], the latter being a particular exactly solvable
projection of the anyon model: it follows that exclusion statistics is deeply rooted in the
more general concept of anyon statistics [15]. Unlike the Bose and Fermi statistics which
describes noninteracting particles, a combinatorial description of exclusion statistics is a priori
quite nontrivial since the underlying physical models with exclusion statistics describe truly
interacting N-body systems.

We show in this paper that a combinatorial interpretation of exclusion statistics involves
a generalization of the partition problem known as the minimal difference partition (MDP)
problem. In MDP, one partitions a positive integer E into N nonzero parts, E = ∑N

j=1 hj

(with hj > 0 for all j = 1, 2, . . . , N ) such that each summand exceeds the next by at least an
integer p, i.e., (hj − hj+1) � p for all j = 1, 2, . . . , N − 1. Therefore, p = 0 corresponds
to unrestricted partitions (bosons) and p = 1 to restricted partitions (fermions) into distinct
parts. Even though the parameter p in MDP is an integer, one can analytically continue the
results to noninteger values of p and we will show that for 0 < p < 1 the MDP corresponds
to a gas of quantum particles obeying exclusion statistics.

Apart from establishing this equivalence between the MDP problem and exclusion
statistics, we also provide a detailed analysis of the asymptotic behavior of ρp(E,N), i.e.,
the number of ways the integer E can be partitioned into N parts in the MDP problem, for
all p � 0. This analysis tells us how the variable N fluctuates from one partition to another
for fixed E. Indeed, defining ρp(E) = ∑

N ρp(E,N) as the total number of partitions of E
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and treating all such partitions equally likely, the ratio Pp(N |E) = ρp(E,N)/ρp(E) is the
probability distribution of the random variable N, given E. We show that this distribution,
properly centered and scaled, has rather different limiting shapes for p = 0 and p > 0. While
for p = 0 the scaled distribution is asymmetric and has a Gumbel shape, for p > 0 (including
the fermionic case p = 1) the scaled distribution is symmetric and has a Gaussian shape.

At this point, it may be useful to summarize our main mathematical results for the
asymptotic behavior of Pp(N |E). For the bosonic case (p = 0), the limiting shape of the
distribution was first derived by Erdös and Lehner using rigorous methods involving upper and
lower bounds [16]. In this paper, we calculate the limiting shapes of Pp(N |E) for all p � 0.
Moreover, our method allows us to compute the probabilities of atypical large fluctuations
which go beyond the range of validity of the limiting distributions.

For p = 0 we show that P0(N |E), as a function of N for fixed E, has a peak at a
characteristic value N∗

0 (E) � 1
a

√
E log(4E/a2) for large E, where a = π

√
2/3, and the

random variable N typically fluctuates around N∗
0 (E) over a scale ∼√

E. Moreover, in the
vicinity of N∗

0 (E) over a range |N − N∗
0 (E)| ∼ O(

√
E), the distribution P0(N |E) has a

scaling form (or a limiting law). In terms of the cumulative probability,

Q0(N |E) =
N∑

N ′=0

P0(N
′|E) ≈ F0

(
a

2
√

E
(N − N∗

0 (E))

)
, (3)

where the scaling function F0(z) has an asymmetric Gumbel form, thus recovering the Erdös–
Lehner result [16]

F0(z) = exp[−exp[−z]]. (4)

In contrast, for p > 0, the distribution Pp(N |E) has quite a different asymptotic behavior.
It has a peak at a characteristic value N∗

p(E) � a1(p)
√

E and N typically fluctuates around
N∗

p(E) over a scale of ∼E1/4 for all p. Moreover, we show that, on this scale, the fluctuations
are Gaussian. More precisely, we show that in the vicinity of N∗

p(E) the cumulative probability
Qp(N |E) has a scaling form

Qp(N |E) ≈ F

(
N − a1(p)

√
E

a2(p)E1/4

)
, where F(z) = 1√

2π

∫ z

−∞
e−y2/2 dy (5)

is a universal scaling function independent of p (>0). The two nonuniversal scale factors
a1(p) and a2(p) however depend explicitly on p and can be computed exactly. For example,
for fermions (p = 1), we recover the Erdös–Lehner result for the mean

a1(1) = 2
√

3

π
ln(2) (6)

and get a new result for the variance

a2(1) =
[

3π2 − 36 ln2(2)√
3π3

]1/2

. (7)

Thus, as far as the limiting shape of the scaled distribution of Pp(N |E) is concerned, it
is a universal Gaussian for all p > 0. The fermionic case p = 1 is thus a representative of
all p > 0 and can be considered as an attractive fixed point along the p-axis (see figure 1). In
contrast, the bosonic case p = 0 represents a repulsive fixed point where the shape is Gumbel.

The limit laws above describe the probabilities of typical fluctuations of N around its
characteristic value N∗

p(E). In this paper, we have also investigated the probability of atypical
large fluctuations of N away from N∗

p(E) and calculated the corresponding large deviation
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p= 0 p= 1
BOSON FERMION

(GUMBEL) (GAUSSIAN)

Figure 1. Schematic flows along the p-axis. The p = 0 represents the bosonic fixed point where
the limiting distribution of Pp(N |E) is Gumbel. In contrast, the behavior for all p > 0 is controlled
by the fermionic fixed point at p = 1 where the limiting distribution is Gaussian.

functions exactly. Like the limit laws, the large deviation properties for p > 0 turns out to
be rather different from the p = 0 case, thus confirming the fixed point picture of figure 1.
Curiously though, we show that the large deviation function for any p > 0 is related to that of
p = 0 via an exact nonlinear relation.

The paper is organized as follows. In section 2, we precisely define the MDP problem,
provide an exact derivation of the generating function of ρp(E,N) and establish a nonlinear
relation between ρp(E,N) with p > 0 and ρ0(E,N). In section 3, we show how the MDP
problem with 0 < p < 1 corresponds to exclusion statistics. In section 4, we provide a
detailed asymptotic analysis of ρp(E,N) for all p � 0 and obtain the limiting shapes of the
scaled distribution Pp(N |E) and also calculate exactly the associated large deviation functions.
Finally, we conclude with a summary and open problems in section 5. An appendix follows
where a grand-canonical approach to MDP partition asymptotics is presented.

2. Minimal difference partition problem: a combinatorial approach

In the MDP problem, one partitions an integer E into N nonzero parts, E = ∑N
j=1 hj (with

hj > 0 for each j = 1, 2, . . . , N) such that each part exceeds the next one by at least an integer
p, i.e., (hj − hj+1) � p for all j = 1, 2, . . . , N − 1 (see figure 2). Let ρp(E,N) denote the
number of ways one can achieve this. Clearly, the cases p = 0 and p = 1 reduce, respectively,
to the unrestricted partitions (bosons) and the restricted partitions (fermions). The generating
function for ρp(E,N) is well known [3] and is given in equation (11). However, here we
provide a simple derivation of this result that brings out in a direct way a nontrivial connection
between the cases p > 0 and p = 0 which will be used later for the analysis of the asymptotic
behavior.

Let us first establish an exact one-to-one correspondence between a partition configuration
of the MDP with nonzero p > 0 and a partition configuration with p = 0. Let {hj } denote
the set of nonzero heights in the partition of E = ∑N

j=1 hj for p = 0 (bosonic case).
Thus, hj � hj+1 for all j = 1, 2, . . . , N − 1. Let us now define a new set of heights
h′

j = hj + p(N − j) for j = 1, 2, . . . , N . Thus, h′
j − h′

j+1 = hj − hj+1 + p for all
j = 1, 2, . . . , N − 1 and h′

N = hN > 0. The new heights thus satisfy the constraint
(h′

j − h′
j+1) � p for all j = 1, 2, . . . , N − 1 and their total height is given by

E′ =
N∑

j=1

h′
j = E + pN(N − 1)/2 =

N∑
j=1

hj + pN(N − 1)/2. (8)

Therefore, the primed heights correspond to a partition configuration of the integer E′ into
N parts with p > 0. This exact correspondence then provides us with the following identity
valid for all N:

ρp(E,N) = ρ0

(
E − p

2
N(N − 1), N

)
. (9)
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j

h j }> p

}> 0

h jE Σ
j=1

N
=

Figure 2. A typical partition configuration of the MDP problem with N = 5. The column heights
hj > 0 for all j = 1, 2, . . . , N and their total height is E = ∑N

j=1 hj . In addition, they satisfy the
constraint (hj − hj+1) � p for an integer p for all j = 1, 2, . . . , N − 1.

Thus, if one can compute the partition function ρ0(E,N) for the bosonic case (p = 0), this
identity can be used to obtain exact results for any arbitrary p > 0, including the fermionic
case p = 1.

For the bosonic (p = 0) case, a straightforward calculation gives the generating function
∞∑

E=1

ρ0(E,N)xE = xN

(1 − x)(1 − x2) · · · (1 − xN)
. (10)

Using the correspondence in equation (9) gives the general result for all p � 0:
∞∑

E=1

ρp(E,N)xE = xN+pN(N−1)/2

(1 − x)(1 − x2) · · · (1 − xN)
. (11)

It turns out to be convenient sometimes to use the cumulative partition function
Cp(E,N) = ∑N

N ′=0 ρp(E,N ′). For p = 0, its generating function can be easily derived
from equation (10) and has a particularly simple form which turns out to be rather useful:

∞∑
E=1

C0(E,N)xE = 1

(1 − x)(1 − x2) · · · (1 − xN)
. (12)

Comparing equations (11) and (12), one gets another identity

ρp(E,N) = C0

(
E − N − p

2
N(N − 1), N

)
(13)

which we will be using later.

3. The MDP with 0 < p < 1 and exclusion statistics

In this section, we show that the MDP problem with integer parameter p, continued analytically
to the range 0 � p � 1, corresponds to a quantum gas of interacting particles obeying exclusion
statistics. This correspondence is established at two levels: (i) at a microscopic level where
we show in section 3.1 that ρp(E,N) of the MDP problem corresponds precisely to the micro-
canonical partition function of the one-dimensional Calogero model in an external harmonic
potential and (ii) at a more general thermodynamical level in section 3.2.
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3.1. Equivalence between the MDP problem and the spectrum of the Calogero model in a
harmonic well

The aim of this subsection is to show that there is an exact one-to-one correspondence
between the energy levels of the one-dimensional Calogero model in an external harmonic well
and the partition configurations of the MDP problem, continued analytically to 0 � p � 1 in
the sense explained below.

The Calogero model (for a review, see [17, 18]) describes an interacting quantum particle
system on a line where the particles attract each other by an inverse square potential. In order
to have a proper thermodynamic limit, one can either put the N particles in a finite box of size
L and then take the N → ∞, L → ∞ limit keeping the density N/L fixed. Alternatively,
one can keep the particles on the infinite line, but switch on an external harmonic potential of
strength ω. In the latter case, one has to eventually take the limit ω → 0 in a suitable way.
It turns out that while the model in a box is not integrable, the model in a harmonic potential
is integrable. Setting the Planck’s constant h̄ = 1 and the mass of each particle m = 1, the
quantum Hamiltonian of the model is

Ĥ = −1

2

N∑
i=

∂2

∂x2
i

+ α(1 + α)
∑
i<j

1

(xi − xj )2
+

1

2
ω2

N∑
i=1

x2
i , (14)

where xi represents the position of the ith particle, ω represents the frequency of the external
harmonic well and α ∈ [−1, 0] represents the coupling strength of mutually attractive
interaction between the particles. In addition, the many-body wavefunction must vanish
at xi = xj for any pair (i 
= j) of coordinates for α 
= 0. It turns out that while α = 0
represents noninteracting bosons (where the many-body wavefunction is symmetric under the
exchange of xi and xj ), α = −1 represents noninteracting fermions (where the wavefunction
vanishes at xi = xj ). For other values of α, this model is known to exhibit fractional statistics
(see, in particular, in the next subsection its manifestation in the thermodynamics of the model).

The many-body energy spectrum of this model is known exactly [9]. The energy E({hj })
is labeled by nonincreasing integers h1 � h2 � h3 · · · � 1:

E({hj }) = ω


 N∑

j=1

hj − 1

2
αN(N − 1)


 . (15)

By making a shift as in equation (8), i.e., defining a new set of variables h′
j = hj + α(N − j),

one can express the energy as E = ω
∑N

j=1 h′
j with the constraint that (h′

j − h′
j+1) � −α.

Thus, the spectrum of the Calogero model in a harmonic potential corresponds exactly to
partition configurations of the MDP with parameter p = −α, but now p is a real number
such that 0 � p � 1. Hence, the micro-canonical partition function of the Calogero model
ρCal(E,N) denoting the number of configurations with energy E and number of particles N is
directly related to the number of partitions ρp(E,N) of the MDP model via

ρCal(E,N) = ρp(E/ω,N). (16)

This implies that the grand-canonical partition functions of the two models are also related.
Let ZCal(β, z) = ∑

E,N ρCal(E,N) e−βEzN be the grand-canonical partition function in the
Calogero model in a harmonic well of frequency ω, where β is the inverse temperature and
z is the fugacity. Similarly, we define Zp(β, z) = ∑

E,N ρp(E,N) e−βEzN as the double
generating function in the MDP problem with parameter p. The relation in equation (16) then
translates into the following relation between the grand partition functions:

ZCal(β, z) = Zp(ωβ, z). (17)
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3.2. Thermodynamic equivalence to exclusion statistics

Exclusion statistics can be most conveniently defined in the following thermodynamical sense.
Let Z(β, z) denote the grand partition function of a quantum gas of particles at inverse
temperature β and fugacity z. Such a gas is said to obey exclusion statistics with parameter
0 � p � 1 if Z(β, z) can be expressed as an integral representation

ln Z(β, z) =
∫ ∞

0
ρ̃(ε) ln yp(z e−βε) dε, (18)

where ρ̃(ε) denotes an effective single particle density of states and the function yp(x), which
encodes fractional statistics, is given by the solution of the functional equation [5–7]

yp(x) − xy1−p
p (x) = 1. (19)

Note that for p = 0, one gets yp(x) = 1/(1 − x) and for p = 1, yp(x) = (1 + x). In
these two extreme cases, equation (18) reduces to the standard grand partition functions of
noninteracting bosons and fermions, respectively. The fractional statistics with parameter
0 < p < 1 (that corresponds to an interacting gas) then smoothly interpolates between these
two extreme cases.

There are at least two microscopic quantum models whose grand-canonical functions
have the form of equation (18). The first example is the LLL anyon model [5] in the infinite
volume limit which can be shown to satisfy equation (18) with an effective density of states
ρ̃(ε) = BV

φ0
δ(ε − ωc), where B is the external magnetic field, φ0 = 2π/e is the flux quantum,

ωc = eB/2m is the cyclotron frequency and V is the infinite area of the system. In this model,
the parameter p = φ/φ0 corresponds to the flux carried by each anyon in units of the flux
quantum. The second example corresponds to the one-dimensional Calogero model defined
in equation (14) again in the infinite box limit. In this case, one can show that the grand
partition function again can be written in the form as in equation (18) with an effective single
particle density ρ̃(ε) = L/

√
8π2ε where L is the infinite length of the system. In both cases,

the thermodynamics is computed in the presence of a long distance harmonic well regulator,
and the thermodynamic limit where the external frequency ω → 0 is taken in such a way so
that one correctly recovers the infinite box limit.

Here we show, using the equivalence to the MDP problem in equation (17), that the
grand partition function of the one-dimensional Calogero model in an external harmonic
well of frequency ω, in the limit ω → 0, can again be written in the general form as in
equation (18), but now with an effective constant density of states ρ̃(ε) = 1/ω. Note that
this is different from the Calogero model in an infinite box of size L (the second example
mentioned in the preceding paragraph): here, the particles are sitting inside a harmonic well
with almost vanishing but nonzero frequency.

To proceed, we first calculate the grand partition function of the MDP problem,
Zp(ωβ, z) = ∑

E,N ρp(E,N) e−ωβEzN , starting from equation (11). We set x = e−βω in
equation (11), multiply it by zN and sum over N. Next we take the logarithm on both sides and
then make a cluster expansion, ln Zp(ωβ, z) = ∑∞

n=1 bnz
n. Now, taking the βω → 0 limit,

one gets

b1 � 1

ωβ
e−ωβ, bn�2 � 1

ωβ

e−nωβ

n2

n−1∏
k=1

(
1 − pn

k

)
. (20)

Note, on the other hand, that if one formally expands ln yp(x) in equation (19) as a power
series in x, one obtains

ln yp(x) =
∞∑

n=1

xn

n

n−1∏
k=1

(
1 − pn

k

)
. (21)
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Comparing equations (20) and (21) one infers that, provided the series is convergent, that is
z e−ωβ < 1,

ln Zp(ωβ, z) =
∫ ∞

1
ln yp(z e−ωβε) dε. (22)

Making a further change of variable ωε → ε, it follows that in the limit ω → 0 (keeping β

fixed)

ln Zp(ωβ, z) → 1

ω

∫ ∞

0
ln yp(z e−βε) dε. (23)

This is again of the form in equation (18) with ρ̃(ε) = 1/ω. Using the equivalence in
equation (17), we then conclude that the Calogero model in an external harmonic well
with vanishing frequency, which precisely corresponds to the MDP problem with parameter
0 � p � 1, can be viewed as a gas of particles obeying exclusion statistics with a statistical
parameter α = −p and a constant density of states.

4. Partition asymptotics in MDP with p � 0

In this section, we explicitly compute the asymptotics of the probability distribution Pp(N |E)

in the MDP problem for all p � 0. We show that while the limiting shape of this distribution
(properly centered and scaled) is Gumbel for p = 0, it is Gaussian for all p > 0 including the
Fermi case p = 1.

4.1. Bosonic case p = 0

Our starting point is the generating function for C0(E,N) in equation (12). We formally invert
this generating function using Cauchy’s theorem and write

C0(E,N) = 1

2π i

∫
dx

xE+1

1

(1 − x)(1 − x2) · · · (1 − xN)

= 1

2π i

∫
dβ exp

[
βE −

N∑
k=1

ln(1 − e−βk)

]
, (24)

where the integration is in the complex x plane along a contour around the origin and we
have made a change of variable x = exp(−β) in going to the second line. For large E, one
can then analyze the leading asymptotic behavior by employing the saddle-point method in
the complex β plane. Anticipating that for large E, the most important contribution to the
integral will come from small β, we first obtain the leading small β behavior of the action
SE,N(β) = βE −∑N

k=1 ln(1 − e−βk). Using the Euler–Mclaurin summation formula, one can
easily show that in the limit of β → 0, N → ∞ limit but keeping βN fixed the action can be
written as

SE,N(β) � βE +
1

β

∫ βN

0

t dt

et − 1
− N ln(1 − e−βN). (25)

We next maximize the action with respect to β, i.e., we set ∂S/∂β = 0 to get

E = 1

β2

∫ βN

0

t dt

et − 1
. (26)

For a given large E, one gets β∗ by implicitly solving the saddle-point equation (26) and
substitute it back into the action SE,N(β∗). Thus, to leading order,

C0(E,N) � exp[SE,N(β∗)] (27)
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where the micro-canonical entropy SE,N(β∗) can be written as

SE,N(β∗) = 1

β∗

[
2
∫ β∗N

0

t dt

et − 1
− β∗N ln(1 − e−β∗N)

]
. (28)

To bring out the scaling form of C0(E,N) explicitly for large E and N, we next proceed as
follows. It is evident from the structure of the saddle-point solution that β∗ ∼ E−1/2 for large
E, whereas β∗ ∼ 1/N for large N indicating that the correct scaling variable is x = N/

√
E.

Next we set β∗N = H(x). In terms of these new scaling variables, the saddle-point solution
in equation (26) can be recast as

H 2(x)

x2
=

∫ H(x)

0

t dt

et − 1
. (29)

Thus, given x, one has to find H(x) by implicitly solving equation (29). The entropy in
equation (28) becomes SE,N(β∗) = √

Eg(x) where the scaling function g(x) is given from
equation (29) as

g(x) = 2
H(x)

x
− x ln(1 − e−H(x)). (30)

Thus, asymptotically for large N and E, keeping the ratio x = N/
√

E fixed, the cumulative
number of configurations C0(E,N) for bosons can be written as

C0(E,N) � exp

[√
Eg

(
N√
E

)]
, (31)

where g(x) is the large deviation function given exactly by equations (30) and (29). This is
the main result of this subsection.

The function g(x) has to be determined numerically by solving the implicit
equations (30) and (29). A plot of this function is given in figure 3. The asymptotic properties
of g(x) for small and large x can be worked out easily. It can be shown that

g(x) ≈ −2x ln(x) as x → 0

≈ a − 2

a
exp(−ax/2) as x → ∞ (32)

where a = π
√

2/3 = 2.5651 . . . .

The result g(x → ∞) = a implies, from equation (31), that ρ(E) = C(E,N → ∞) ∼
exp[a

√
E] to leading order for large E, thus recovering the famous Hardy–Ramanujan result

[1]. The normalized cumulative distribution of N (given E), Q0(N |E) = C0(E,N)/ρ(E),
then has the large deviation form

Q0(N |E) � exp

[
−

√
E


(
N√
E

)]
, where 
(x) = a − g(x) (33)

and 
(x) has the asymptotic behavior


(x) ≈ a + 2x ln(x), as x → 0

≈ 2

a
exp(−ax/2), as x → ∞. (34)

As x → ∞, i.e., as N � √
E, clearly Q(N |E) → 1 as expected, since it is the

normalized cumulative distribution of N. The precise approach to 1 can be obtained using the
large x asymptotics of 
(x) in equation (34). Substituting this behavior into equation (33)
one gets for N � √

E

Q0(N |E) � exp

[
−2

a

√
E exp(−aN/2

√
E)

]
= F0

(
a

2
√

E
(N − N∗

0 (E))

)
, (35)
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Figure 3. The large deviation function g(x) for bosons (p = 0).

where the characteristic value of the random variable N is N∗
0 (E) � 1

a

√
E log(4E/a2) and the

scaling function has the Gumbel form, F0(z) = exp[− exp[−z]]. Evidently, the probability
distribution P0(N |E) = Q(N |E) − Q(N − 1|E) � ∂Q0(N |E)/∂N has the scaling form

P0(N |E) � a

2
√

E
F ′

0

(
a

2
√

E
(N − N∗

0 (E))

)
where F ′

0(z) = exp[−z − exp[−z]]

(36)

which is highly asymmetric around the peak at N = N∗
0 (E). This limiting distribution of

N that describes the probability of typical fluctuations of N of ∼O(
√

E) around the peak at
N∗

0 (E) was originally derived by Erdös and Lehner by computing upper and lower bounds to
the probability [16]. Our method allows us to obtain a more general result in equation (33)
which is valid over a wider range and reduces to the Gumbel limiting form near the peak.
A rigorous mathematical derivation of this result, including the exponential prefactor, can be
found in the work of Szekeres [19].

4.2. The case p > 0

For p > 0, one can directly obtain the asymptotic behavior of ρp(E,N) by using the identity
in equation (13) and the already derived asymptotic behavior of C0(E,N) in equation (31).
In the scaling limit when N and E are both large but the ratio x = N/

√
E is kept fixed, one

gets to leading order

ρp(E,N) � exp

[√
Efp

(
N√
E

)]
(37)

with

fp(x) =
√

1 − px2/2g

(
x√

1 − px2/2

)
(38)

where g(x) is given in equations (30) and (29).
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Figure 4. The large deviation function f1(x) for fermions (p = 1).

Note that the function fp(x) has nonzero support only over x ∈ [0,
√

2/p]. This is
easy to understand from the fact that for p > 0, E has a minimum value for any given
N or, equivalently, N has a finite maximum value for any given E. For example, for the
fermionic case (p = 1), the lowest value of E for a given N corresponds to the Fermi energy
EF = N(N + 1)/2 where one puts one fermion at each single particle level εi = i for
i = 1, 2, . . . , N . Thus, E � N(N + 1)/2 for all N. In other words, for large N,N �

√
2E,

i.e., x �
√

2. Similar arguments can be given for any positive p > 0. Unlike the function g(x)

which is monotonically increasing, the function fp(x) in equation (38) is a non-monotonic
function in x ∈ [0,

√
2/p]. It vanishes at the two ends as

fp(x) ≈ −2x ln(x) as x → 0

≈ π
√

6

3
(2p)1/4

√√
2/p − x (39)

and has a unique maximum at x∗(p) = a1(p), where a1(p) can be obtained by setting
dfp(x)/dx = 0 in equation (38) and then using the known properties of g(x). A plot of fp(x)

for p = 1 (Fermi case) is given in figure 4.
By playing around with the form of fp(x) in equation (38) and that of g(x) in

equations (30) and (29) one can derive a number of explicit results. We skip the details
here and just mention the results. For example, the location of the maximum x∗(p) = a1(p)

is given by

a1(p) = ln y�
0√

p(ln y�
0)

2/2 + Li2(1 − 1/y�
0)

, (40)

where y�
0 − y

�1−p

0 = 1 and Li2(z) = ∑∞
k=0

zk

k2 is the dilogarithm function. For example, in the

fermionic case p = 1, we get y�
0 = 2 and a1(1) = 2

√
3 ln(2)/π = 0.764304 . . . . Similarly,

the value of the function at the maximum fp(x = a1(p)) can be shown to be

fp(x = a1(p)) = 2
√

Li2(1 − 1/y�
0) + p(ln y�

0)
2/2. (41)
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For example, for p = 1, it gives fp(x = a1(1)) = π/
√

3. For an arbitrary p, this formula
which goes back to Meinardus [21] provides a generalization of the Hardy–Ramanujan formula
for ρ(E). One can check that equation (41) coincides with the integral formula obtained by
Blencowe et al [20] who also investigated the Haldane statistics but did not provide any
combinatorial interpretation of their result. Around the maximum at x = a1(p), the function
fp(x) can be expanded in a Taylor series and up to the quadratic order

fp(x) � fp(a1(p)) +
1

2a2
2(p)

(x − a1(p))2 + · · · (42)

where a2(p) can also be evaluated. For example, for p = 1, we get

a2(1) =
[

3π2 − 36 ln2(2)√
3π3

]1/2

= 0.478815 . . . . (43)

Evidently, one can easily evaluate the asymptotic behavior of ρp(E) = ∑
N ρp(E,N) for

large E by replacing the sum by an integral, use the large deviation form in equation (37) for
ρp(E,N) and then using the saddle-point method. To leading order, this gives

ρp(E) � exp[fp(a1(p))
√

E]. (44)

The normalized probability distribution of N (for fixed E), Pp(N |E) = ρp(E,N)/ρp(E), then
has the large deviation asymptotics:

Pp(N |E) � exp

[
−

√
Eψp

(
N√
E

)]
, where ψp(x) = fp(a1(p)) − fp(x). (45)

Thus, for all p > 0, the probability distribution Pp(N |E) has a peak at a characteristic
value N∗

p(E) = a1(p)
√

E (note the difference from the boson case p = 0, where

N∗
0 (E) ∼ √

E ln(E)). Using the expansion in equation (42), it follows that in the vicinity of
N∗

p(E) (over a scale of ∼O(E1/4)) Pp(N |E) has a Gaussian limiting form

Pp(N |E) � 1

a2(p)E1/4
F ′

(
(N − a1(p)

√
E)

a2(p)E1/4

)
, where F ′(z) = 1√

2π
e−z2/2. (46)

Note, in particular, that the standard deviation measuring the root-mean-squared fluctuation of

N, σp(E) =
√

〈(N − N∗
p(E))2〉, grows with E as a power law, σp(E) � a2(p)E1/4, where the

exponent 1/4 is universal for all p > 0. Moreover, apart from nonuniversal p-dependent scale
factors such as a1(p) and a2(p), the full distribution Pp(N |E) also has the same universal
Gaussian limiting form for all p > 0. Thus, the Fermi point p = 1 is a generic point that is
representative of all values of p > 0 as far as the limiting distribution is concerned. In this
sense, all p > 0 behavior is controlled by the attractive Fermi fixed point as shown in figure 1.
The bosonic fixed point at p = 0, on the other hand, is a repulsive one.

5. Summary and open problems

To summarize, in this paper we have provided a combinatorial interpretation of exclusion
statistics in terms of minimal difference partitions. This correspondence is based on the
observation that the grand-canonical partition function of the Calogero model coincides with
the generating function of MDP. By going to the grand-canonical ensemble and taking a
suitable thermodynamic limit, we have recovered the functional equation characteristic of
exclusion statistics. Apart from establishing this correspondence, we have also provided a
detailed analysis of the asymptotic behavior of ρp(E,N). Our approach uses a mapping
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with the bosonic problem which holds for arbitrary p ∈ [0, 1]. In physical terms, this
generalizes the well-known mapping between fermions and bosons with a linear dispersion
law [22, 23]. The fact that this mapping has a number theoretical interpretation was apparently
not known before. By using this mapping, we obtain a general description of the limiting laws
of Pp(N |E) for all p > 0. We find that the bosonic point is a repulsive fixed point where the
statistics is Gumbel. In contrast, for all p > 0 the distribution is Gaussian. Several questions
emerge from this work and would be worth investigating.

(1) The regime p < 0. In this case, the functional equation (19) still holds where yp(x)

can be interpreted as the generating function of connected clusters on a p-ary tree. A
preliminary investigation of this model shows that the scaling behavior of ρp(E,N) is
quite different from the previous case [24].

(2) In this work, we have limited ourselves to the integer partition problem or equivalently to
a quantum gas of particles with equidistant single particle spectrum, i.e., with a constant
density of states ρ̃(ε) = constant. It would be interesting to investigate general partitions
of the form E = ∑

nii
s that corresponds to having a power-law density of states,

ρ̃(ε) ∼ ε1/s−1. In this case, we have shown in a recent work [25] that the bosonic sector
gives rise to the three universal distribution laws of extreme statistics, namely the Gumbel,
Weibull and Fréchet distributions. It would be interesting to explore the general p > 0
case including the fermionic sector and see if the bosonic point p = 0 is still a repulsive
fixed point.

(3) For the bosonic case (p = 0), Vershik [26] and Temperley [27] calculated the limiting
shapes of the Young diagram, i.e., the average height profile for a fixed but large E. This
result can be generalized [24] to the case p > 0 using the functional equation (19).

Note added in proof. After completion of this work, we came to know of [28] where the author
also used equation (38) to derive the asymptotics of minimal difference partitions. We thank
Dan Romik for pointing out this reference to us.

Appendix. A grand-canonical approach

Let us denote by ρp,s(E,N) the number of ways to partition a positive integer E into N non-
negative integer parts, E = ∑N

j=1 hj , such that each summand exceeds the next by at least
an integer p, i.e., (hj − hj+1) � p for all j = 1, 2, . . . , N − 1 and such as the smallest part
is an integer �s. This MDP generalizes the standard MDP partitioning case studied above
where the smallest part s was set to 1, i.e., ρp(E,N) = ρp,1(E,N) . The canonical partition
function in (11) now becomes

∞∑
E=1

ρp,s(E,N)xE = xsN+pN(N−1)/2

(1 − x)(1 − x2) · · · (1 − xN)
. (A.1)

The generating function for ρp,l(E,N) is Zp,l(x, z) = ∑∞
E,N ρp,l(E,N)xEzN , where by

convention the zeroth-order term in z is equal to 1. Setting x = e−β , analogous considerations
as in section 3 give in the small β limit

ln Zp,s(β, z) =
∫ ∞

s

ln yp(z e−βε) dε (A.2)

which generalizes (22) to the case s 
= 1 (here the parameter ω in (22) is set to 1). This is
again exclusion statistics thermodynamics, with a constant one-body density of state starting
at ε = s. It means that the MDP problem can be equivalently viewed, in the small β limit,
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as a gas of particles obeying exclusion statistics with a statistical parameter α = −p and a
constant density of states.

In the thermodynamic limit, one is interested by the large E and large N behavior of
ρp,s(E,N). In the grand-canonical ensemble, this amounts to evaluating the thermally

averaged partitioned integer 〈E〉 ≡ − ∂ ln Zp,s (β,z)

∂β
and the average number of parts 〈N〉 ≡

z
∂ ln Zp,s (β,z)

∂z
. Both 〈E〉 and 〈N〉 are given in terms of np, the mean occupation number at ‘part’

ε, namely 〈E〉 = ∫ ∞
s

np(z e−βε)ε dε and 〈N〉 = ∫ ∞
s

np(z e−βε) dε. It satisfies yp = 1 + np

1−pnp

such that

z e−βε = np

(1 + (1 − p)np)1−p(1 − pnp)p
(A.3)

implying in particular that np � 1/p, i.e., the mean occupation number at part ε cannot exceed
1/p.

Pushing further this grand-canonical analysis, it is easy to obtain that

〈E〉 − s〈N〉 = 1

β
ln Zp,s(β, z) and 〈N〉 = 1

β
ln yp(z e−βs). (A.4)

The entropy S ≡ ln Zp,s(β, z) + β〈E〉 − (ln z)〈N〉 rewrites

S = 2β
(
〈E〉 − s〈N〉 − p

2
〈N〉2

)
− 〈N〉 ln(1 − e−β〈N〉), (A.5)

with

β2(〈E〉 − s〈N〉 − p

2
〈N〉2) = −

∫ 1−e−β〈N〉

0

ln(1 − u)

u
du =

∫ β〈N〉

0

u

eu − 1
du. (A.6)

Equations (A.5) and (A.6) are the building blocks from which the entropy can be obtained:
inverting (A.6) gives β as a function of 〈E〉 and 〈N〉 so that the entropy in (A.5) becomes
a function of 〈E〉 and 〈N〉 only, and consequently ρp,s(〈E〉, 〈N〉) � exp(S) as well. Note
finally that (A.5) and (A.6) are nothing but the generalization of (29) and (30) to the MDP
p 
= 0 and s 
= 0 case. They are also, at the canonical level, contained in (13) (in the case
s = 1).
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